Dimension and projections in normed spaces

AMS Sectional Meeting 22-24 March 2019 University of Hawaii at Manoa, Honolulu, HI

Annina Iseli

University of California Los Angeles

 $v \in \mathcal{S}^1$ and v^{\perp} a line in \mathbb{R}^2 $P_v : \mathbb{R}^2 \to v^{\perp}$ orthogonal projection onto v^{\perp} .

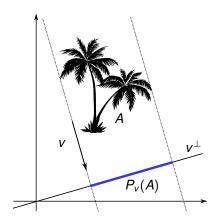
Given $A \subset \mathbb{R}^2$ Borel, dim A = s dim $P_v(A) = ?$

Then trivially:

- dim $P_v A \leq 1$
- $\dim P_v A \leq s$

Are these good bounds?

 \rightarrow Yes!



In 1954, John Marstrand proved:

Given a Borel set $A \subset \mathbb{R}^2$, then for almost every line v^{\perp}

$$\dim P_{\nu}A = \min \{1, \dim A\}.$$

for almost every line: for all v^{\perp} with $v \in E \subset S^1$, $\mathscr{H}^1(E) = 0$.

Marstrand's theorem rephrased:

$$\mathscr{H}^{1}\left\{\underbrace{v \in S^{1} : \dim P_{v}A < \min\left\{1, \dim A\right\}}_{:=E}\right\} = 0$$

E is the set of exceptional directions for *A*.

 $A \subset \mathbb{R}^2$ a Borel set, dim A = s > 0.

Marstrand 1954:

If
$$s \le 1$$
, $\mathcal{H}^1\{v \in S^1 : \dim P_v A < s\} = 0$
If $s > 1$, $\mathcal{H}^1\{v \in S^1 : \mathcal{H}^1(P_v(A)) = 0\} = 0$

Kaufman 1968:

If
$$s \le 1$$
, dim $\{v \in S^1 : \dim P_v A < s\} < s$.

- Mattila 1975: Generalization to projections of \mathbb{R}^n to *m*-planes.
- Falconer 1982:

If
$$s > 1$$
, dim $\{v \in S^1 : \mathcal{H}^1(P_v(A)) = 0\} \le 1-s$

In codimension = 1 ...

 $A \subset \mathbb{R}^n$ a Borel set, dim A = s > 0.

Marstrand 1954:

If
$$s \le n-1$$
, $\mathcal{H}^{n-1}\{v \in S^{n-1} : \dim P_v A < s\} = 0$
If $s > n-1$, $\mathcal{H}^{n-1}\{v \in S^{n-1} : \mathcal{H}^1(P_v(A)) = 0\} = 0$

Kaufman 1968:

If
$$s \le n-1$$
, dim $\{v \in S^1 : \dim P_v A < s\} < s$.

- Mattila 1975: Generalization to projections of \mathbb{R}^n to *m*-planes.
- Falconer 1982:

If
$$s > n-1$$
, dim $\{v \in S^{n-1} : \mathcal{H}^{n-1}(P_v(A)) = 0\} \le (n-1)-s$

In codimension = 1: Projections onto (n-1)-planes

Projections in normed spaces

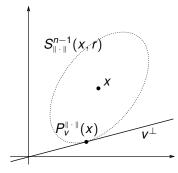
Let $\|\cdot\|$ be a strictly convex norm on \mathbb{R}^n .

Closest point projections onto (n-1)-planes are well defined:

Let
$$v \in \mathcal{S}^{n-1}$$
 and $x \in \mathbb{R}^{n-1} \setminus v^{\perp}$
 $r = \operatorname{dist}_{\|\cdot\|}(x, v^{\perp})$

$$P_v^{\parallel \cdot \parallel}: \mathbb{R}^n o v^{\perp}$$
 given by $P_v^{\parallel \cdot \parallel}(x) \in v^{\perp} \cap \mathcal{S}_{\parallel \cdot \parallel}^{n-1}(x,r)$

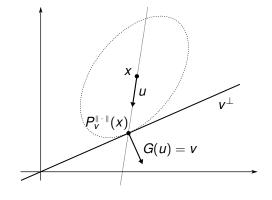
Do Marstrand-type projection theorems hold?



Projections in normed spaces

Let $\|\cdot\|$ be a strictly convex, C^1 -regular norm on \mathbb{R}^n .

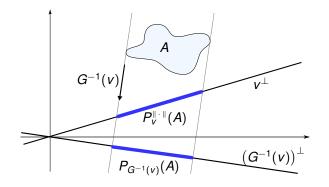
Gauss map $G: S_{\|\cdot\|}^{n-1} \to S^{n-1}$ is a homeomorphism.



For fixed $v \in S^{n-1}$, $P_v^{\parallel \cdot \parallel}$ is the projection onto v^{\perp} in direction $G^{-1}(v)$.

Projection Theorems for normed spaces

How to prove Marstrand-type results for projections $P_{\nu}^{\parallel \cdot \parallel} : \mathbb{R}^n \to \nu^{\perp}$?



$$P_{v}^{\parallel \cdot \parallel}(A) \sim P_{G^{-1}(v)}(A)$$
 in measure and dimension $\Rightarrow E_{\parallel \cdot \parallel} = G(E)$

Projection Theorems for normed spaces

Theorem 1. $\|\cdot\|$ a strictly convex C^1 -regular norm on \mathbb{R}^n and G is dimension non-increasing and preserves \mathscr{H}^{n-1} -zero sets. Then for every Borel set $A\subseteq\mathbb{R}^n$ with dim A=s,

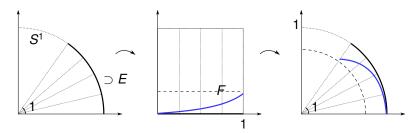
- if $s \le n-1$ · $\mathscr{H}^{n-1}\{v \in S^{n-1} : \dim P_v^{\|\cdot\|}A < s\} = 0$ · $\dim\{v \in S^1 : \dim P_v^{\|\cdot\|}A < t\} < t, \ 0 < t \le s.$
- if s > n-1, · $\mathcal{H}^{n-1}\{v \in S^{n-1} : \mathcal{H}^1(P_v^{\parallel \cdot \parallel}(A)) = 0\} = 0$ · $\dim\{v \in S^{n-1} : \mathcal{H}^{n-1}(P_v^{\parallel \cdot \parallel}(A)) = 0\} \le (n-1) - s$

Note: If $\|\cdot\|$ is $C^{1,1}$ -regular and strictly convex, then Theorem 1 holds.

Projection Theorems for normed spaces

Theorem 2. There exists a strictly convex and C^1 -regular norm $\|\cdot\|$ on \mathbb{R}^2 such that Theorem 1 fails.

Proof: Find $\|\cdot\|$ strictly convex and C^1 -regular and $A \subset \mathbb{R}^2$ Borel such that G blows up E in measure and dimension.



Open problems

Summary:

- If $\|\cdot\|$ is $C^{1,1} \Rightarrow$ projection theorems hold in \mathbb{R}^n
- If $\|\cdot\|$ only $C^1 \Rightarrow$ counterexample in \mathbb{R}^2

Question: What about $C^{1,\delta}$, $0 < \delta < 1$?

Answer: Depends on the structure of the exceptional sets *E*, which is in general unknown.

Question: Counterexample for n > 2? \rightarrow work in progress.

Thank you!