The quasiconformal geometry of continuum trees

Mario Bonk (University of California, Los Angeles) joint work with Huy Tran (TU Berlin) and with Daniel Meyer (University of Liverpool)

> AMS Sectional Meeting Honolulu, March 22–24, 2018

Quasiconformal geometry I

The quasiconformal (=qc) geometry of a metric space is related to geometric conditions that are robust under changes of scale, or depend only on *relative* distances (=ratios of distances).

- Example 1: A metric space X is doubling if there ex. $N \in \mathbb{N}$ such that every ball in X can be covered by N (or fewer) balls of half the radius.
- Example 2: A metric space (X, d) is of bounded turning if there ex. $\lambda \geq 1$ such any two points $x, y \in X$ can be joined by a continuum $E \subseteq X$ s.t.

$$diam E \leq \lambda d(x, y).$$

Quasiconformal geometry I

The quasiconformal (=qc) geometry of a metric space is related to geometric conditions that are robust under changes of scale, or depend only on *relative* distances (=ratios of distances).

- Example 1: A metric space X is doubling if there ex. $N \in \mathbb{N}$ such that every ball in X can be covered by N (or fewer) balls of half the radius.
- Example 2: A metric space (X, d) is of bounded turning if there ex. $\lambda \geq 1$ such any two points $x, y \in X$ can be joined by a continuum $E \subseteq X$ s.t.

$$diam E \leq \lambda d(x, y).$$

Quasiconformal geometry I

The **quasiconformal** (=qc) geometry of a metric space is related to geometric conditions that are robust under changes of scale, or depend only on *relative* distances (=ratios of distances).

- Example 1: A metric space X is doubling if there ex. $N \in \mathbb{N}$ such that every ball in X can be covered by N (or fewer) balls of half the radius.
- **Example 2:** A metric space (X, d) is *of bounded turning* if there ex. $\lambda \geq 1$ such any two points $x, y \in X$ can be joined by a continuum $E \subseteq X$ s.t.

$$\operatorname{diam} E \leq \lambda d(x,y).$$

Quasconformal geometry II

- Relevant maps in qc-geometry: quasisymmetric (=qs) homeomorphism f: X → Y.
 Qs-homeos. distort relative distances in a controlled way; they map metric balls to "quasi-balls" (=sets with uniformly bounded "eccentricity").
- Conditions in qc-geometry are typically invariant under quasisymmetries.

```
Example: Let f: X \to Y be a quasisymmetry. If X is doubling, then Y is doubling. If X is of bdd. turning, then Y is of bdd. turning
```

Quasconformal geometry II

- Relevant maps in qc-geometry: quasisymmetric (=qs) homeomorphism f: X → Y.
 Qs-homeos. distort relative distances in a controlled way; they map metric balls to "quasi-balls" (=sets with uniformly bounded "eccentricity").
- Conditions in qc-geometry are typically invariant under quasisymmetries.

Example: Let $f: X \to Y$ be a quasisymmetry. If X is doubling, then Y is doubling. If X is of bdd. turning, then Y is of bdd. turning.

Quasconformal geometry III

- Qc-geometry is important for the study of *self-similar* fractals.
- Strong motivation from complex dynamics or geometric group theory (Thurston's s characterization of postcritically-finite rational maps; Cannon's conjecture).
- Program to systematically study qc-geometry of low-dimensional fractals such as:
 Cantor sets, quasi-circles, Sierpiński gaskets and carpets, fractal 2-spheres, dendrites or continuum trees, etc.

Quasconformal geometry III

- Qc-geometry is important for the study of *self-similar* fractals.
- Strong motivation from complex dynamics or geometric group theory (Thurston's s characterization of postcritically-finite rational maps; Cannon's conjecture).
- Program to systematically study qc-geometry of low-dimensional fractals such as:
 Cantor sets, quasi-circles, Sierpiński gaskets and carpets, fractal 2-spheres, dendrites or continuum trees, etc.

Quasconformal geometry III

- Qc-geometry is important for the study of self-similar fractals.
- Strong motivation from complex dynamics or geometric group theory (Thurston's s characterization of postcritically-finite rational maps; Cannon's conjecture).
- Program to systematically study qc-geometry of low-dimensional fractals such as:
 Cantor sets, quasi-circles, Sierpiński gaskets and carpets, fractal 2-spheres, dendrites or continuum trees, etc.

Continuum trees or dendrites

 A (continuum) tree or dendrite is a locally connected, connected, compact metric space s.t. any two points can be joined by a unique arc.

Trees appear in various contexts:

- as Julia sets,
- as attractors of iterated function systems (e.g., the CSST=continuum self-similar tree),
- in probabilistic models (e.g., the CRT=continuum random tree).

Continuum trees or dendrites

 A (continuum) tree or dendrite is a locally connected, connected, compact metric space s.t. any two points can be joined by a unique arc.

Trees appear in various contexts:

- as Julia sets,
- as attractors of iterated function systems (e.g., the CSST=continuum self-similar tree),
- in probabilistic models (e.g., the CRT=continuum random tree).

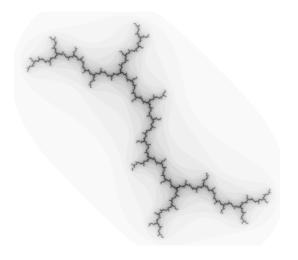
Continuum trees or dendrites

 A (continuum) tree or dendrite is a locally connected, connected, compact metric space s.t. any two points can be joined by a unique arc.

Trees appear in various contexts:

- as Julia sets,
- as attractors of iterated function systems (e.g., the CSST=continuum self-similar tree),
- in probabilistic models (e.g., the CRT=continuum random tree).

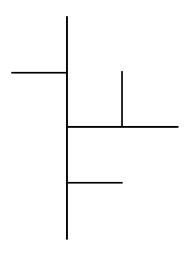
A Julia set



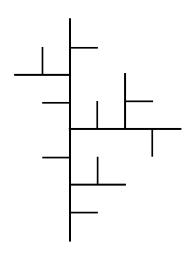
The Julia set $\mathcal{J}(P)$ of $P(z) = z^2 + i$ (= set of points with bounded orbit under iteration) is a tree.

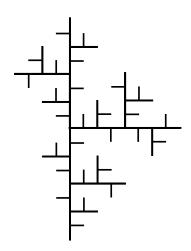
CSST \mathbb{T} (=continuum self-similar tree)

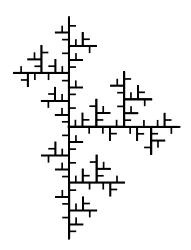
$\mathsf{CSST} \ \mathbb{T}$



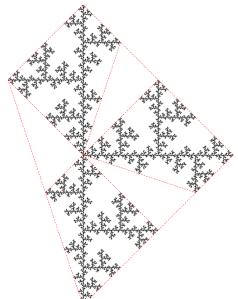
$\overline{\mathsf{CSST}}$ $\overline{\mathbb{T}}$







$\mathsf{CSST}\ \mathbb{T}$



$\mathsf{CSST} \ \mathbb{T}$

The CSST \mathbb{T} is:

- a geodesic continuum tree (as an abstract metric space).
- an attractor of an iterated function system (as a subset of the plane). Define

$$f_1(z) = \frac{1}{2}z - \frac{i}{2}, \quad f_2(z) = -\frac{1}{2}\bar{z} + \frac{i}{2}, \quad f_3(z) = \frac{i}{2}\bar{z} + \frac{1}{2},$$

Then $\mathbb{T}\subseteq\mathbb{C}$ is the unique non-empty compact set satisfying

$$\mathbb{T} = f_1(\mathbb{T}) \cup f_2(\mathbb{T}) \cup f_3(\mathbb{T}).$$

So \mathbb{T} is the attractor of the iterated function system $\{f_1, f_2, f_3\}$ in the plane.

Topology of the CSST

M. Bonk and Huy Tran, The continuum self-similar tree, on arXiv.

Theorem (Charatonik-Dilks 1994; B.-Tran 2018)

A continuum tree T is homeomorphic to the CCST $\mathbb T$ iff all branch points of T have order 3 and they are dense in T.

Theorem (Croyden-Hambly 2008; B.-Tran 2018)

The continuum random tree (CRT) is almost surely homeomorphic to the CSST.

Theorem (B.-Tran)

The Julia set $\mathcal{J}(z^2+i)$ is homeomorphic to the CSST.

Topology of the CSST

M. Bonk and Huy Tran, The continuum self-similar tree, on arXiv.

Theorem (Charatonik-Dilks 1994; B.-Tran 2018)

A continuum tree T is homeomorphic to the CCST $\mathbb T$ iff all branch points of T have order 3 and they are dense in T.

Theorem (Croyden-Hambly 2008; B.-Tran 2018)

The continuum random tree (CRT) is almost surely homeomorphic to the CSST.

Theorem (B.-Tran)

The Julia set $\mathcal{J}(z^2+i)$ is homeomorphic to the CSST.

Topology of the CSST

M. Bonk and Huy Tran, The continuum self-similar tree, on arXiv.

Theorem (Charatonik-Dilks 1994; B.-Tran 2018)

A continuum tree T is homeomorphic to the CCST $\mathbb T$ iff all branch points of T have order 3 and they are dense in T.

Theorem (Croyden-Hambly 2008; B.-Tran 2018)

The continuum random tree (CRT) is almost surely homeomorphic to the CSST.

Theorem (B.-Tran)

The Julia set $\mathcal{J}(z^2+i)$ is homeomorphic to the CSST.

Problems about the quasiconformal geometry of trees

- When can one promote a homeomorphism between trees to a quasisymmetry?
- Is there a characterization of the CSST up to qs-equivalence?
- What can one say about the qc-geometry of the CRT or Julia sets of postcritically-finite polynomials?
- Are there some canonical models for certain classes of trees up to qs-equivalence (uniformization problem)?

Qs-characterization of quasi-arcs

Theorem (Tukia-Väisälä 1980)

Let α be a metric arc. Then α is qs-equivalent to [0,1] iff α is doubling and of bounded turning.

A metric space X is *doubling* is there exists $N \in \mathbb{N}$ such that every ball in X can be covered by N (or fewer) balls of half the radius.

A metric space (X, d) is of bounded turning if there ex. $\lambda \ge 1$ such any two points $x, y \in X$ can be joined by a continuum $E \subseteq X$ s.t.

$$diam E \leq \lambda d(x,y).$$

M. Bonk and D. Meyer, *Quasi-trees and geodesic trees*, on arXiv.

Theorem (B.-Meyer 2019)

Let T be a tree that is doubling and of bounded turning (a "quasi-tree"). Then T is qs-equivalent to a geodesic tree.

A tree
$$(T, d)$$
 is *geodesic* if for all $x, y \in T$,

ength
$$[x, y] = d(x, y)$$
.

Note: in a quasi-tree we have diam $[x, y] \approx d(x, y)$.

Proof of Theorem: For each level n decompose the metric space (T,d) into pieces X^n with diam $X^n \asymp \delta^n$, where $\delta > 0$ is a small parameter. Carefully redefine metric d by assigning new diameters to these pieces to obtain a geodesic metric ϱ on T. With suitable choices, the identity map $(T,d) \to (T,\varrho)$ is a quasisymmetry.

M. Bonk and D. Meyer, *Quasi-trees and geodesic trees*, on arXiv.

Theorem (B.-Meyer 2019)

Let T be a tree that is doubling and of bounded turning (a "quasi-tree"). Then T is qs-equivalent to a geodesic tree.

A tree (T, d) is geodesic if for all $x, y \in T$,

length
$$[x, y] = d(x, y)$$
.

Note: in a quasi-tree we have diam $[x, y] \approx d(x, y)$.

Proof of Theorem: For each level n decompose the metric space (T,d) into pieces X^n with diam $X^n \asymp \delta^n$, where $\delta > 0$ is a small parameter. Carefully redefine metric d by assigning new diameters to these pieces to obtain a geodesic metric ϱ on T. With suitable choices, the identity map $(T,d) \to (T,\varrho)$ is a quasisymmetry.

M. Bonk and D. Meyer, *Quasi-trees and geodesic trees*, on arXiv.

Theorem (B.-Meyer 2019)

Let T be a tree that is doubling and of bounded turning (a "quasi-tree"). Then T is qs-equivalent to a geodesic tree.

A tree (T, d) is geodesic if for all $x, y \in T$,

$$length [x,y] = d(x,y).$$

Note: in a quasi-tree we have diam $[x, y] \approx d(x, y)$.

Proof of Theorem: For each level n decompose the metric space (T,d) into pieces X^n with diam $X^n \asymp \delta^n$, where $\delta > 0$ is a small parameter. Carefully redefine metric d by assigning new diameters to these pieces to obtain a geodesic metric ϱ on T. With suitable choices, the identity map $(T,d) \to (T,\varrho)$ is a quasisymmetry.

M. Bonk and D. Meyer, *Quasi-trees and geodesic trees*, on arXiv.

Theorem (B.-Meyer 2019)

Let T be a tree that is doubling and of bounded turning (a "quasi-tree"). Then T is qs-equivalent to a geodesic tree.

A tree (T, d) is geodesic if for all $x, y \in T$,

length
$$[x, y] = d(x, y)$$
.

Note: in a quasi-tree we have diam $[x, y] \approx d(x, y)$.

Proof of Theorem: For each level n decompose the metric space (T,d) into pieces X^n with diam $X^n \simeq \delta^n$, where $\delta > 0$ is a small parameter. Carefully redefine metric d by assigning new diameters to these pieces to obtain a geodesic metric ϱ on T. With suitable choices, the identity map $(T,d) \to (T,\varrho)$ is a quasisymmetry.

Height of a branch point

Let T be a tree. Then $p \in T$ is a branch point of T if $T \setminus \{p\}$ has at least three connected components B_1, B_2, B_3, \ldots (the branches of T at p).

One can order them so that

$$\operatorname{\mathsf{diam}} B_1 \geq \operatorname{\mathsf{diam}} B_2 \geq \operatorname{\mathsf{diam}} B_3 \geq \dots$$

Then the height of p in T is defined as

$$h_T(p) = \text{diam } B_3$$

= diameter of third largest component of $T \setminus \{p\}$.

Characterization of the CSST up to qs-equivalence

Theorem (B.-Meyer)

Let (T, d) be tree. Then T is qs-equivalent to the CSST if and only if the following conditions are true:

- T is a quasi-tree, i.e., doubling and of bounded turning.
- each branch point of T has order 3.
- the branch points of T are uniformly relatively separated, i.e., if $p, q \in T$ are branch points, then

$$d(p,q)\gtrsim \min\{h_T(p),h_T(q)\}.$$

• the branch points of T are uniformly dense, i.e., if $a, b \in T$ are distinct points, then there exists a branch point $p \in [a, b]$ s.t.

$$h_T(p) \gtrsim d(a,b)$$
.

Some ideas for the proof of Theorem:

Necessity (easy): the CSST has the stated properties and they are invariant under quasisymmetries.

Sufficiency: Carefully decompose the given tree (T,d) into pieces. Obtain a sequence of finite trivalent trees T_n with good geometric control that better and better approximate T, i.e., $T_n \to T$. Use universality property of the CSST to find trees $T'_n \subseteq \mathbb{T}$ s.t. T'_n is uniformly qs-equivalent to T_n . Pass to limit $n \to \infty$ to find a quasisymmetry $T \to \mathbb{T}$.

Some ideas for the proof of Theorem:

Necessity (easy): the CSST has the stated properties and they are invariant under quasisymmetries.

Sufficiency: Carefully decompose the given tree (T,d) into pieces. Obtain a sequence of finite trivalent trees T_n with good geometric control that better and better approximate T, i.e., $T_n \to T$. Use universality property of the CSST to find trees $T'_n \subseteq \mathbb{T}$ s.t. T'_n is uniformly qs-equivalent to T_n . Pass to limit $n \to \infty$ to find a quasisymmetry $T \to \mathbb{T}$.

Some ideas for the proof of Theorem:

Necessity (easy): the CSST has the stated properties and they are invariant under quasisymmetries.

Sufficiency: Carefully decompose the given tree (T,d) into pieces. Obtain a sequence of finite trivalent trees T_n with good geometric control that better and better approximate T, i.e., $T_n \to T$. Use universality property of the CSST to find trees $T'_n \subseteq \mathbb{T}$ s.t. T'_n is uniformly qs-equivalent to T_n . Pass to limit $n \to \infty$ to find a quasisymmetry $T \to \mathbb{T}$.

Question

Is the CRT almost surely qs-equivalent to the CSST?

No, because the CSST is a quasi-tree, and in particular doubling, while the CRT is not doubling, and doubling is preserved under quasisymmetries.

Open Problem (very hard!)

Are two independent samples of the CRT almost surely qs-equivalent?

Question

Is the CRT almost surely qs-equivalent to the CSST?

No, because the CSST is a quasi-tree, and in particular doubling, while the CRT is not doubling, and doubling is preserved under quasisymmetries.

Open Problem (very hard!)

Are two independent samples of the CRT almost surely qs-equivalent?

Question

Is the CRT almost surely qs-equivalent to the CSST?

No, because the CSST is a quasi-tree, and in particular doubling, while the CRT is not doubling, and doubling is preserved under quasisymmetries.

Open Problem (very hard!)

Are two independent samples of the CRT almost surely qs-equivalent?

Question

Is the CRT almost surely qs-equivalent to the CSST?

No, because the CSST is a quasi-tree, and in particular doubling, while the CRT is not doubling, and doubling is preserved under quasisymmetries.

Open Problem (very hard!)

Are two independent samples of the CRT almost surely qs-equivalent?

Thank you!