Singular sets of UAD measures

Abdalla Dali Nimer (University of Chicago)

AMS Spring Central and Western Sectional Meeting, Hawaii

March 23rd, 2019

Besicovitch(1938) Let $E \subset \mathbb{R}^2, 0 < \mathcal{H}^1(E) < \infty$ and for \mathcal{H}^1 almost every $x \in E$,

$$\lim_{r\to 0}\frac{\mathcal{H}^1(E\cap B(x,r))}{2r}=1.$$

Then

E is 1 - rectifiable.

Theorem (Preiss)

Let Φ be a Radon measure on \mathbb{R}^d . Then Φ is n-rectifiable (i.e. $\Phi << \mathcal{H}^n$ and that $\Phi(\mathbb{R}^d \setminus E) = 0$ for some n-rectifiable set E) if and only if for Φ almost every x, $\Theta^n(\Phi,x) = \lim_{r \to 0} \frac{\Phi(B(x,r))}{\omega_n r^n}$ exists and

$$0 < \Theta^n(\Phi, x) < \infty$$
.

Let Φ be a Radon measure on \mathbb{R}^d , x a point in its support. We say that λ is a pseudo-tangent measure of Φ at x if $\lambda \neq 0$ and there exists sequences of positive reals $(r_i),(c_i)$ with $r_i \downarrow 0$ and a sequence of points $x_i, x_i \to x$ such that:

$$c_i T_{x_i,r_i}[\Phi] \rightharpoonup \lambda$$
 as $i \to \infty$,

where the convergence is the weak convergence of measures and $c_i T_{x,r}[\Phi]$ is the push-forward of Φ by the homothecy $T_{x,r}(y) = \frac{y-x}{r}$.

Let μ be a Radon measure in \mathbb{R}^d .

• We say μ is *n*-uniform if there exists c > 0 such that for all $x \in spt(\mu)$, r > 0:

$$\mu(B(x,r))=cr^n.$$

• We say μ is uniformly distributed or uniform if there exists a function $f:(0,+\infty)\to(0,+\infty)$ such that: for all $x\in spt(\mu)$, r>0:

$$\mu(B(x,r)) = f(r).$$

Let μ be a Radon measure in \mathbb{R}^d .

• We say μ is *n*-uniform if there exists c > 0 such that for all $x \in spt(\mu)$, r > 0:

$$\mu(B(x,r))=cr^n.$$

• We say μ is uniformly distributed or uniform if there exists a function $f:(0,+\infty)\to(0,+\infty)$ such that: for all $x\in spt(\mu)$, r>0:

$$\mu(B(x,r))=f(r).$$

- (**Preiss**)The support of an 1-uniform measure is a line, of a 2-uniform measure is a plane.
- (Kirchheim-Preiss) The support of an uniform measure is an analytic variety.
- (Kowalski-Preiss) The support of an *n*-uniform measure in \mathbb{R}^{n+1} can only be an *n*-plane or (up to rotation) $\mathbb{R}^{n-3} \times C$ where $C = \{(x_1, x_2, x_3, x_4); x_4^2 = x_1^2 + x_2^2 + x_3^2\}$.
- (N.) μ is an n-uniform measure in \mathbb{R}^d , $n \geq 3$ and \mathcal{S}_{μ} its set of singularities. Then $dim(\mathcal{S}_{\mu}) \leq n-3$.

- (**Preiss**)The support of an 1-uniform measure is a line, of a 2-uniform measure is a plane.
- (Kirchheim-Preiss) The support of an uniform measure is an analytic variety.
- (Kowalski-Preiss) The support of an *n*-uniform measure in \mathbb{R}^{n+1} can only be an *n*-plane or (up to rotation) $\mathbb{R}^{n-3} \times C$ where $C = \{(x_1, x_2, x_3, x_4); x_4^2 = x_1^2 + x_2^2 + x_3^2\}$.
- (N.) μ is an n-uniform measure in \mathbb{R}^d , $n \geq 3$ and \mathcal{S}_{μ} its set of singularities. Then $dim(\mathcal{S}_{\mu}) \leq n-3$.

- (**Preiss**)The support of an 1-uniform measure is a line, of a 2-uniform measure is a plane.
- (Kirchheim-Preiss)The support of an uniform measure is an analytic variety.
- (**Kowalski-Preiss**) The support of an *n*-uniform measure in \mathbb{R}^{n+1} can only be an *n*-plane or (up to rotation) $\mathbb{R}^{n-3} \times C$ where $C = \{(x_1, x_2, x_3, x_4); x_4^2 = x_1^2 + x_2^2 + x_3^2\}$.
- (N.) μ is an n-uniform measure in \mathbb{R}^d , $n \geq 3$ and \mathcal{S}_{μ} its set of singularities. Then $dim(\mathcal{S}_{\mu}) \leq n-3$.

- (**Preiss**)The support of an 1-uniform measure is a line, of a 2-uniform measure is a plane.
- (Kirchheim-Preiss) The support of an uniform measure is an analytic variety.
- (**Kowalski-Preiss**) The support of an *n*-uniform measure in \mathbb{R}^{n+1} can only be an *n*-plane or (up to rotation) $\mathbb{R}^{n-3} \times C$ where $C = \{(x_1, x_2, x_3, x_4); x_4^2 = x_1^2 + x_2^2 + x_3^2\}$.
- (N.) μ is an n-uniform measure in \mathbb{R}^d , $n \geq 3$ and \mathcal{S}_{μ} its set of singularities. Then $dim(\mathcal{S}_{\mu}) \leq n-3$.

Consider a Radon measure μ on \mathbb{R}^d , $\Sigma = supp(\mu)$. For a fixed integer n, $n \leq d$, define for $x \in \Sigma$, r > 0 and $t \in (0,1]$

$$R_t(x,r) = \frac{\mu(B_{tr}(x))}{\mu(B_r(x))} - t^n$$

which encodes the doubling properties of μ . We say μ is n-asymptotically optimally doubling (n-AOD) if for each compact set $K \subset \mathbb{R}^d$, $x \in K$ and $t \in [0,1]$, we have

$$\lim_{r\to 0^+} \sup_{x\in K} |R_t(x,r)| = 0$$

Theorem (Kenig-Toro)

Let μ be a Radon measure in \mathbb{R}^d that is doubling and n-asymptotically optimally doubling. Then all pseudo-tangent measures of μ are n-uniform.

Let μ be a Radon doubling measure in \mathbb{R}^d , $\Sigma = spt(\mu)$. We say μ is uniformly asymptotically doubling (UAD) if there exists a continuous function $f_\mu: \Sigma \times \mathbb{R}_+ \to \mathbb{R}_+$, $f_\mu(x,1) = 1$ for every $x \in \Sigma$ such that, for every K compact with $K \cap \Sigma \neq \emptyset$:

$$\lim_{r\to 0}\sup_{x\in K}\left|\frac{\mu(B_{tr}(x))}{\mu(B_{r}(x)}-f_{\mu}(x,t)\right|=0, \text{ for } x\in K\cap \Sigma,\ t\in (0,1].$$

We call f_{μ} the distribution function associated to μ .

Theorem (N.,'18)

Let μ be a uniformly asymptotically doubling measure in \mathbb{R}^d . Then all pseudo-tangents of μ are uniform. More precisely, if $\xi \in \operatorname{supp}(\mu)$, and ν is a pseudo-tangent to μ at ξ , then for every $x \in \operatorname{supp}(\nu)$, and every r > 0 we have :

$$\nu(B_r(x)) = f_{\mu}(\xi, r).$$

Lemma (N.,18, direct consequence of (Preiss))

Let μ be a Uniformly Asymptotically Doubling measure and f be its distribution function. Then for every x there exists $n = n_x$ such that:

$$\lim_{t\to 0}\frac{f(x,t)}{t^n}=f(x),$$

where $f(x) \in (0, \infty)$. We say μ is n-UAD for $n = \max_x n_x$.

Theorem (N., 2018)

Let μ be a n-UAD measure in \mathbb{R}^d , $3 \leq n \leq d$. Then

$$dim_{\mathcal{H}}(\mathcal{S}_{\nu}) \leq n-3.$$

Thank you!