Characterization of Branched Covers with Simplicial Branch Sets

Eden Prywes

University of California, Los Angeles

University of Hawai'i, March 24th, 2019

Joint work with Rami Luisto

Branched Covers

Defintion

A branched cover is a continuous map $f: \Omega \to \mathbb{R}^n$, where Ω is a domain in \mathbb{R}^n , that is discrete and open.

Branched Covers

Defintion

A branched cover is a continuous map $f: \Omega \to \mathbb{R}^n$, where Ω is a domain in \mathbb{R}^n , that is discrete and open.

• At most points f is a local homeomorphism. The branch set of f, denoted B_f , is the set of points where f fails to be a local homeomorphism.

Branched Covers

Defintion

A branched cover is a continuous map $f: \Omega \to \mathbb{R}^n$, where Ω is a domain in \mathbb{R}^n , that is discrete and open.

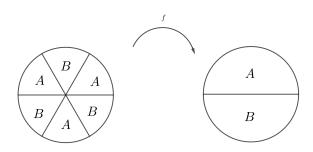
- At most points f is a local homeomorphism. The branch set of f, denoted B_f , is the set of points where f fails to be a local homeomorphism.
- Branched covers are topological generalization of quasiregular maps.

In two dimensions the typical example of a branched cover is a rational map $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$.

- The branch set is the finite set of critical points of *f* .
- Near the branch points, f behaves like the map z^d , where d is the degree of the critical point.

In two dimensions the typical example of a branched cover is a rational map $f \colon \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$.

- The branch set is the finite set of critical points of f.
- Near the branch points, f behaves like the map z^d , where d is the degree of the critical point.
- Topologically, this map is equivalent to a winding map: $(r, \theta) \mapsto (r, d\theta)$.



Up to homeomorphism, this characterizes every branched cover.

Theorem (Stoïlow)

Let $f: S^2 \to \widehat{\mathbb{C}}$ be a branched cover. Then there exists a homeomorphism $h: \widehat{\mathbb{C}} \to S^2$ so that $f \circ h$ is a rational map.

Up to homeomorphism, this characterizes every branched cover.

Theorem (Stoïlow)

Let $f: S^2 \to \widehat{\mathbb{C}}$ be a branched cover. Then there exists a homeomorphism $h: \widehat{\mathbb{C}} \to S^2$ so that $f \circ h$ is a rational map.

Corollary

Every branched cover from $S^2 \to S^2$ is equivalent up to a homeomorphism to a piecewise linear (PL) map.

Motivation

Definition

A map $f: \Omega \to \mathbb{R}^n$ is K-quasiregular if $f \in W^{1,n}_{loc}(\Omega)$ and for almost every $x \in \Omega$,

$$||Df||^n \leq KJ_f$$

where Df is the derivative of f and $J_f = \det(Df)$.

Motivation

Definition

A map $f: \Omega \to \mathbb{R}^n$ is K-quasiregular if $f \in W^{1,n}_{loc}(\Omega)$ and for almost every $x \in \Omega$,

$$||Df||^n \leq KJ_f$$
,

where Df is the derivative of f and $J_f = \det(Df)$.

 By a theorem due to Reshetnyak, quasiregular maps are branched covers.

Motivation

Definition

A map $f: \Omega \to \mathbb{R}^n$ is K-quasiregular if $f \in W^{1,n}_{loc}(\Omega)$ and for almost every $x \in \Omega$,

$$||Df||^n \leq KJ_f$$

where Df is the derivative of f and $J_f = \det(Df)$.

- By a theorem due to Reshetnyak, quasiregular maps are branched covers.
- The converse is generally false and it is difficult to construct quasiregular maps.
- PL maps are generally quasiregular.

Higher Dimensions

Theorem (Church and Hemmingsen, '60)

Let $f: \Omega \to \mathbb{R}^n$ be a branched cover, where Ω is a domain in \mathbb{R}^n . If $f(B_f)$ can be embedded into a codimension 2 plane, then f is topologically equivalent to a winding map.

Higher Dimensions

Theorem (Church and Hemmingsen, '60)

Let $f: \Omega \to \mathbb{R}^n$ be a branched cover, where Ω is a domain in \mathbb{R}^n . If $f(B_f)$ can be embedded into a codimension 2 plane, then f is topologically equivalent to a winding map.

- By a theorem due to Černavskii and Väisälä, B_f and $f(B_f)$ have topological dimension less than n-2.
- In dimension 2 this hypothesis is always satisfied, but it is not always satisfied in higher dimensions.

Let P be the Poincaré homology sphere.

Let P be the Poincaré homology sphere.

• S^3 is the universal covering space of P.

Let P be the Poincaré homology sphere.

- S^3 is the universal covering space of P.
- If $\pi \colon S^3 \to P$ is the covering map, then we can take the suspension of both sides to get a map

$$\Sigma \pi \colon S^4 \to \Sigma P$$
.

Let P be the Poincaré homology sphere.

- S^3 is the universal covering space of P.
- If $\pi \colon S^3 \to P$ is the covering map, then we can take the suspension of both sides to get a map

$$\Sigma \pi \colon S^4 \to \Sigma P$$
.

ullet ΣP is not a topological manifold, but $\Sigma \Sigma P \simeq S^5$. So

$$\Sigma\Sigma\pi\colon S^5\to S^5$$

is a branched cover with branch set $B \simeq S^1$.

Let P be the Poincaré homology sphere.

- S^3 is the universal covering space of P.
- If $\pi \colon S^3 \to P$ is the covering map, then we can take the suspension of both sides to get a map

$$\Sigma \pi \colon S^4 \to \Sigma P$$
.

ullet ΣP is not a topological manifold, but $\Sigma \Sigma P \simeq S^5$. So

$$\Sigma\Sigma\pi\colon S^5\to S^5$$

is a branched cover with branch set $B \simeq S^1$.

• Note that $\pi_1(S^5 \setminus B)$ has order 120.

Generalizing Church and Hemmingsen

Theorem (Martio and Srebro, '79)

Let $f: \Omega \to \mathbb{R}^3$ be a branched cover and $x_0 \in B_f$. If there exists and open neighborhood V of x_0 so that the image of the branch set $f(B_f \cap V)$ can be embedded into a union of finitely many line segments originating from $f(x_0)$, then f is topologically equivalent on V to a cone of a rational map $g: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$.

A cone of a map g is the map

$$g\times \mathsf{id}\colon \operatorname{\mathsf{cone}}(\widehat{\mathbb{C}})\to \operatorname{\mathsf{cone}}(\widehat{\mathbb{C}}),$$

$$\mathsf{cone}(\widehat{\mathbb{C}}) = \frac{\widehat{\mathbb{C}} \times [0,1]}{\{(z,0) \sim (w,0)\}}$$

 $(\widehat{\mathbb{C}} \times [0,1]$ with this identification is homeomorphic to B^3).

Generalizing Church and Hemmingsen

Theorem (Martio and Srebro, '79)

Let $f: \Omega \to \mathbb{R}^3$ be a branched cover and $x_0 \in B_f$. If there exists and open neighborhood V of x_0 so that the image of the branch set $f(B_f \cap V)$ can be embedded into a union of finitely many line segments originating from $f(x_0)$, then f is topologically equivalent on V to a cone of a rational map $g: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$.

A cone of a map g is the map

$$g\times \mathsf{id}\colon \operatorname{\mathsf{cone}}(\widehat{\mathbb{C}})\to \operatorname{\mathsf{cone}}(\widehat{\mathbb{C}}),$$

$$\mathsf{cone}(\widehat{\mathbb{C}}) = \frac{\widehat{\mathbb{C}} \times [0,1]}{\{(z,0) \sim (w,0)\}}$$

 $(\widehat{\mathbb{C}} \times [0,1])$ with this identification is homeomorphic to B^3).

This implies that f is topologically equivalent to a PL map.

Theorem (Luisto and P., '18)

Let $f: \Omega \to \mathbb{R}^n$ be a branched cover and $x_0 \in B_f$. If there exists an open neighborhood V of x_0 so that the image of the branch set $f(B_f \cap V)$ can be embedded into an (n-2)-simplicial complex, then f is topologically equivalent on V to a cone of a PL map $g: S^{n-1} \to S^{n-1}$.

Theorem (Luisto and P., '18)

Let $f: \Omega \to \mathbb{R}^n$ be a branched cover and $x_0 \in B_f$. If there exists an open neighborhood V of x_0 so that the image of the branch set $f(B_f \cap V)$ can be embedded into an (n-2)-simplicial complex, then f is topologically equivalent on V to a cone of a PL map $g: S^{n-1} \to S^{n-1}$.

• This implies that f is topologically equivalent to a PL map.

Theorem (Luisto and P., '18)

Let $f: \Omega \to \mathbb{R}^n$ be a branched cover and $x_0 \in B_f$. If there exists an open neighborhood V of x_0 so that the image of the branch set $f(B_f \cap V)$ can be embedded into an (n-2)-simplicial complex, then f is topologically equivalent on V to a cone of a PL map $g: S^{n-1} \to S^{n-1}$.

- This implies that f is topologically equivalent to a PL map.
- This theorem also extends to a global result for $f: S^n \to S^n$.

We can use this result to construct quasiregular maps.

Corollary

For each $n \in \mathbb{N}$ there exists a quasiregular map $f : \mathbb{R}^{2n} \to \mathbb{CP}^n$.

We can use this result to construct quasiregular maps.

Corollary

For each $n \in \mathbb{N}$ there exists a quasiregular map $f : \mathbb{R}^{2n} \to \mathbb{CP}^n$.

• The map

$$([z_1:w_1],\cdots,[z_n:w_n]) \mapsto [z_1\cdots z_n:\sum_{i=1}^n z_1\cdots \widehat{z_i}\cdots z_n w_i:\cdots:w_1\cdots w_n]$$

is a branched cover from $\mathbb{CP}^1 \times \cdots \times \mathbb{CP}^1 \to \mathbb{CP}^n$.

Normal Neighborhoods

Theorem (Luisto and P., '18)

Let $f: \Omega \to \mathbb{R}^n$ be a branched cover and $x_0 \in B_f$. If there exists an open neighborhood V of x_0 so that the image of the branch set $f(B_f \cap V)$ can be embedded into an (n-2)-simplicial complex, then f is topologically equivalent on V to a cone of a PL map $g: S^{n-1} \to S^{n-1}$.

Let $f: \Omega \to \mathbb{R}^n$ be a branched cover and $x_0 \in \Omega$ be a point. There exists a radius $r_0 > 0$ and a family of neighborhoods, denoted $U(x_0, r)$, such that for $0 < r \le r_0$

- $\bullet \ x_0 \in U(x_0,r)$
- $f(U(x_0,r)) = B(f(x_0),r)$
- $f(\partial U(x_0, r) = \partial B(f(x_0), r)$
- $f^{-1}\{f(x_0)\} \cap U(x_0, r) = \{x_0\}$

- Suppose that near x_0 , $\partial U(x_0, r)$ is homeomorphic to S^{n-1} .
- It is a fact that restricted to $\partial U(x_0, r)$, f is still a branched cover. So if we induct on the dimension, $f: \partial U(x_0, r) \to S^{n-1}$ is equivalent to a PL map.

- Suppose that near x_0 , $\partial U(x_0, r)$ is homeomorphic to S^{n-1} .
- It is a fact that restricted to $\partial U(x_0, r)$, f is still a branched cover. So if we induct on the dimension, $f: \partial U(x_0, r) \to S^{n-1}$ is equivalent to a PL map.
- Then by a path lifting argument we show that f behaves the same way topologically on the boundaries of $U(x_0, r)$ for all sufficiently small r.

- Suppose that near x_0 , $\partial U(x_0, r)$ is homeomorphic to S^{n-1} .
- It is a fact that restricted to $\partial U(x_0, r)$, f is still a branched cover. So if we induct on the dimension, $f: \partial U(x_0, r) \to S^{n-1}$ is equivalent to a PL map.
- Then by a path lifting argument we show that f behaves the same way topologically on the boundaries of $U(x_0, r)$ for all sufficiently small r.
- So f is equivalent to a cone of a PL map.

- Suppose that near x_0 , $\partial U(x_0, r)$ is homeomorphic to S^{n-1} .
- It is a fact that restricted to $\partial U(x_0, r)$, f is still a branched cover. So if we induct on the dimension, $f: \partial U(x_0, r) \to S^{n-1}$ is equivalent to a PL map.
- Then by a path lifting argument we show that f behaves the same way topologically on the boundaries of $U(x_0, r)$ for all sufficiently small r.
- So f is equivalent to a cone of a PL map.
- It is not clear that $\partial U(x_0,r) \simeq S^{n-1}$, in fact it may not even be a manifold.

Back to Dimensions Two and Three

• In dimension two, f is locally injective on $\partial U(x_0, r)$ and so $\partial U(x_0, r)$ is a manifold and therefore is homeomorphic to S^1 .

Back to Dimensions Two and Three

- In dimension two, f is locally injective on $\partial U(x_0, r)$ and so $\partial U(x_0, r)$ is a manifold and therefore is homeomorphic to S^1 .
- In dimension three Martio and Srebro show that $\partial U(x_0, r) \simeq S^2$.
- $\partial U(x_0, r)$ is a manifold using a similar argument as in dimension two.
- $U(x_0, r)$ is contractible so $\partial U(x_0, r) \simeq S^2$.

$\partial U(x_0,r)$ is a Manifold

- f restricted to $\partial U(x_0, r)$ is a branched cover and away from the branch set is a covering map.
- So $\partial U(x_0, r) \setminus B_f$ is a manifold.
- If $x \in \partial U(x_0, r) \cap B_f$, then we consider the map f restricted to a normal neighborhood of x in $\partial U(x_0, r)$.
- We continue this way to go down in dimension considering more and more nested normal neighborhoods.

Normal Neighborhoods

There is a partial converse to the Martio-Srebro result.

Theorem (Martio and Srebro, '79)

Let $f: \Omega \to \mathbb{R}^3$ be a branched cover so that at $x \in \Omega$ there exists an $r_0 > 0$ with the property that for all $r \le r_0$, $\partial U(x_0, r)$ is a manifold. Then at x_0 , f is equivalent to a path of rational maps.

Normal Neighborhoods

There is a partial converse to the Martio-Srebro result.

Theorem (Martio and Srebro, '79)

Let $f: \Omega \to \mathbb{R}^3$ be a branched cover so that at $x \in \Omega$ there exists an $r_0 > 0$ with the property that for all $r \le r_0$, $\partial U(x_0, r)$ is a manifold. Then at x_0 , f is equivalent to a path of rational maps.

We show a corresponding result:

Theorem (Luisto and P, '18)

Let $f: \Omega \to \mathbb{R}^n$ be a branched cover so that at $x \in \Omega$ there exists an $r_0 > 0$ with the property that for all $r \le r_0$, $\partial U(x_0, r)$ is a manifold. Then at x_0 , f is equivalent to a path of branched covers.

Thank you!