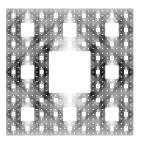
Conformal Dimension via p-resistance: Sierpiński Carpet

Topics at the interface of analysis and geometry

AMS Meeting, Hawaii

(22 March 2019)



Jarek Kwapisz

Mathematics, Montana State University, Bozeman

Q: Why Montana? A: 20 min by car + lift/hike time (from desk):

Conformal Dimension

[All spaces Ahlfors regular.]

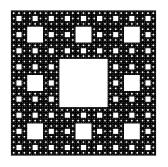
Definition (Bourdon, Pajot (2003))

(Ahlfors-regular) conformal dimension of X is

 $\dim_{conf}(X) := \inf \left\{ \dim_{HD}(Y) : \exists f : X \to Y \ \textit{q.s. map} \right\}$

If inf is attained by f_{opt} , call $f_{opt}: X \to Y_{opt}$ a quasi-symmetric uniformization of X.

Today: X = Sierpinski Carpet (but it all generalizes!)



 $\dim_{\mathsf{HD}}(X) = \ln 8 / \ln 3 \approx 1.893$

Digression: Round Carpets of Geometric Origin

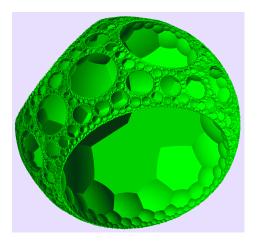


Figure: Sierpinski Schläfi-(7, 3, 3) honeycomb (by Danny Calegari); 7-gon faces; 3 meeting a vertex; 3 polyhedra along an edge.

The Problem

$$\dim_{conf}(X) = ?$$

$$f_{\mathsf{opt}}: X \to Y = ???$$

New (2016) Results

"Convincing" numerical prediction

$$\dim_{\mathsf{conf}}(X) \approx 1.7967$$

c.f. R. Malo (2015 PhD under L. Geyer): $1.7 \le \dim_{conf}(X) \le 1.8$

upper/lower bounds by hand:

$$1.704 < \dim_{\mathsf{conf}}(X) < 1.848$$

c.f. Keith and Laakso (2004) and Kigami (2010)

$$1.6309 \approx 1 + \frac{\ln 2}{\ln 3} \le \dim_{\text{conf}}(X) \le \frac{\ln \left((9 + \sqrt{41})/2 \right)}{\ln 3} \approx 1.858$$

- method for computer assisted bounds of arbitrary precision
- conjectural construction of uniformization by a slit carpet

New (2016) Results

"Convincing" numerical prediction

$$\dim_{\mathrm{conf}}(X) \approx 1.7967$$

c.f. R. Malo (2015 PhD under L. Geyer): $1.7 \le \dim_{conf}(X) \le 1.8$

upper/lower bounds by hand:

$$1.704 < \dim_{\mathsf{conf}}(X) < 1.848$$

c.f. Keith and Laakso (2004) and Kigami (2010)

$$1.6309 \approx 1 + \frac{\ln 2}{\ln 3} \le \dim_{\text{conf}}(X) \le \frac{\ln \left((9 + \sqrt{41})/2) \right)}{\ln 3} \approx 1.858$$

- method for computer assisted bounds of arbitrary precision
- conjectural construction of uniformization by a slit carpet
- sup- and sub- multiplicativity of modulus/resistance
- two sided modulus/resistance bounds at criticality

Conformal Dimension ≡ Resistance Dimension

NEW/OLD IDEA: Use electrical p-currents to probe X

Theorem

For the carpet (and, likely, any half-decent X): If \mathcal{G}_n is a resistor network approximating X and $R_n(p)$ is its p-resistance, then $\dim_{conf}(X)$ is the critical exponent

$$\mathrm{p}_{\mathit{res}} := \inf\{\mathrm{p} > 1 : \limsup_{n \to \infty} R_n(\mathrm{p}) = \infty\}$$

I will explain the terms soon but:

- ▶ Proof of Th: p-resistance ~ p-extremal length ...
- ▶ easy via scheme of Carrasco Piaggio (after Pansu, Bourdon-Kleiner,...) instantiated by Geyer-Malo for X

But the devil is elsewhere: engineering networks with good estimates.

Key Numerical Graph: p-resistance vs p

$$dim_{conf}(X) = p_{res} =$$
 the **pivot point:**

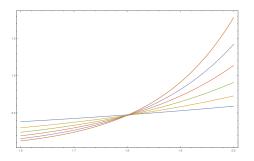


Figure: Resistance $R_n(p)$, over $1.6 \le p \le 2$, for approximation resolution 3^{-n} with n = 1, ..., 6

DC circuit ≡ resistor network

- ▶ **network** \equiv di-graph $(\mathcal{V}, \mathcal{E})$ with weights $r: \mathcal{E} \rightarrow [0, \infty]$
- ▶ marked network has selected $A, B \subset V$ input and output vertices $(A \cap B = \emptyset)$

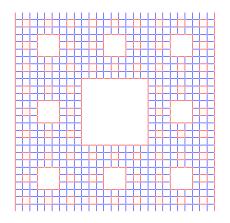


Figure: \mathcal{G}_3 ; r = 0.5 blue, r = 1 red edges; $\mathcal{A} = \text{top}$; $\mathcal{B} = \text{bottom}$.

Q: Why uneven (1 or 0.5) resistance?

A: Of course, Growing Networks by Substitution:

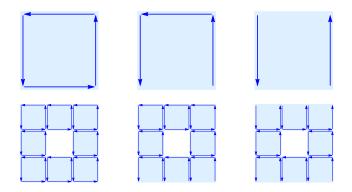


Figure: All unit resistors. (Vertices suppressed.)

p-currents and p-resistance (of a marked network)

$$1/p + 1/q = 1$$
, $(p, q > 1)$ [Note: $p/q = p - 1$, $q/p = q - 1$]

p-power of a **flow** \mathcal{J} is the weighted **q-norm**:

$$P(\mathcal{J}) := \sum_{e \in \mathcal{E}} (r(e)^{1/p} |\mathcal{J}(e)|)^{q}$$

[DEF: \mathcal{J} is a flow $\equiv \mathcal{J}$ satisfies 1st Kirchhoff Law]

▶ p-resistance (from A to B) is R given by

$$R^{1/\mathrm{p}} := \min_{\mathcal{J}} rac{P(\mathcal{J})^{1/\mathrm{q}}}{I(\mathcal{J})}$$

over **flows** \mathcal{J} (from \mathcal{A} to \mathcal{B}) with **flux** $I(\mathcal{J}) = I \neq 0$.

Potential (≡ Lagrange Multipliers)

Fix flux $l \neq 0$ and introduce **Lagrange multipliers**:

- $lacksymbol{ iny} \mathcal{U}(v) \in \mathbb{R}$ enforcing $\operatorname{div} \mathcal{J}(v) = 0$ (at each $v
 ot\in \mathcal{A} \cup \mathcal{B}$)
- $U \in \mathbb{R}$ enforcing flux $\sum_{v \in \mathcal{B}} \operatorname{div} \mathcal{J}(v) = I$

Recast multipliers as potential

$$\mathcal{U}: \mathcal{V} \to \mathbb{R}, \quad \mathcal{U}|_{\mathcal{A}} = 0, \ \mathcal{U}|_{\mathcal{B}} = U$$

The Lagrangian (after summation by parts):

$$\mathcal{L} = \sum_{e \in \mathcal{E}} \frac{r(e)^{\mathrm{q/p}}}{\mathrm{q}} |\mathcal{J}(e)|^{\mathrm{q}} - \nabla \mathcal{U}(e) \mathcal{J}(e) + UI$$

p-Ohm Law (\equiv Euler-Lagrange Equations)

From Lagrangian
$$\mathcal{L}(\mathcal{J},\mathcal{U}) = \sum_{e \in \mathcal{E}} \frac{r(e)^{q/p}}{q} |\mathcal{J}(e)|^q - \nabla \mathcal{U}(e) \mathcal{J}(e)$$

Euler-Lagrange eqn (apart from constraints) give

p-Ohm Law (for each edge)

Use
$$q - 1 = q/p$$

$$(\nabla \mathcal{U}(e))^{\mathbf{p}} = r(e)^{\mathbf{q}} (\mathcal{J}(e))^{\mathbf{q}} \qquad \left(\equiv \frac{\partial \mathcal{L}}{\partial \mathcal{J}(\cdot)} = 0 \right)$$

Notation:
$$(s)^p := \operatorname{sgn}(s)|s|^p$$

- **>** p-**current** is a flow $\mathcal J$ satisfying p-Ohm for some $\mathcal U:\mathcal V\to\mathbb R$
- **p-potential** is $\mathcal{U}:\mathcal{V}\to\mathbb{R}$ whose $\mathcal J$ satisfies 1st Kirchhoff Law

p-Laplace Eq:
$$\operatorname{div}\left(\frac{\nabla \mathcal{U}^{\mathrm{p/q}}}{r}\right) = 0$$

Lagrange-Hölder Duality

p-power of potential $\mathcal{U}: \mathcal{V} \to \mathbb{R}$ is a weighted p-norm:

$$P(\mathcal{U}) := \sum_{e} \left(\frac{|\nabla \mathcal{U}(e)|}{r(e)^{1/p}} \right)^{p}$$

Hölder inequality (for a flow \mathcal{J} with flux I and \mathcal{U} with drop U):

$$UI = \sum_{e} \nabla \mathcal{U}(e) \mathcal{J}(e) \leq P(\mathcal{J})^{1/q} P(\mathcal{U})^{1/p}$$

rewrites as (error bounding!) duality gap:

$$\frac{U}{P(\mathcal{U})^{1/p}} \le R^{1/p} \le \frac{P(\mathcal{J})^{1/q}}{I}$$

At the optimum the gap closes:

$$\max_{\mathcal{U}} \frac{U}{P(\mathcal{U})^{1/p}} = R^{1/p} = \min_{\mathcal{J}} \frac{P(\mathcal{J})^{1/q}}{I}$$

Summary of p-circuit Theory

dual and primal optimization problems:

$$\max_{\mathcal{U}} \frac{\mathcal{U}}{P(\mathcal{U})^{1/p}} = R^{1/p} = \min_{\mathcal{J}} \frac{P(\mathcal{J})^{1/q}}{I},$$

At optimum:

p-Ohm Law links current and potential:

$$(\nabla \mathcal{U})^p = (r\mathcal{J})^q$$
 and $U^p = (RI)^q$

▶ Joule's Law gives the dissipated power:

$$P = UI = \frac{U^{P}}{R} = R^{q/P}I^{q}$$

Off optimum:

Error bounds from duality gap:

$$\frac{U}{P(\mathcal{U})^{1/p}} \le R^{1/p} \le \frac{P(\mathcal{J})^{1/q}}{I}$$

Poincare Duality

$$\mathcal{G}^* := \mathsf{dual} \ \mathsf{of} \ \mathcal{G} \ \mathsf{with} \ \mathsf{resistance} \ r^*(e^*)^{1/q} := r(e)^{-1/p}.$$

Let

$$\mathcal{J}^*(e^*) = \nabla \mathcal{U}(e)$$
 and $\nabla \mathcal{U}^*(e^*) = \mathcal{J}(e)$.

Then

$$P^*(\mathcal{J}^*) = P(\mathcal{U})$$
 and $P^*(\mathcal{U}^*) = P(\mathcal{J})$.

1st Kirchhoff for $\mathcal{J} \leftrightarrow \mathbf{2nd}$ Kirchhoff for $\nabla \mathcal{U}^*$

2nd Kirchhoff for $\mathcal{U} \quad \leftrightarrow \quad$ 1st Kirchhoff for \mathcal{J}^*

p-**Ohm** for \mathcal{U} , \mathcal{J} \leftrightarrow q-**Ohm** for \mathcal{U}^* , \mathcal{J}^*

At optimum:

$$P^* = P$$
 and $R^{1/p}R^{*1/q} = 1$

Poincaré Duality: Simple Example

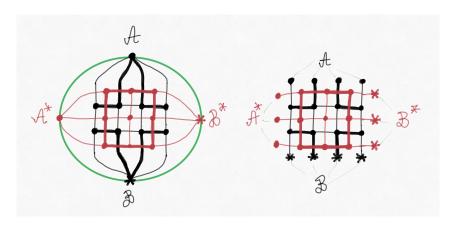


Figure: Two (equivalent) pairs, $(\mathcal{G}, \mathcal{A}, \mathcal{B})$ and $(\mathcal{G}^*, \mathcal{A}^*, \mathcal{B}^*)$, of topologically dual marked networks. (The one on the left is embedded in a closed disk bounded by the green circle.) Thick black edges have resistance 2^{-1} ; thick red $2^{q/p}$; all other resistances are unit.

Poincaré Dual Network with Superconducting Islands

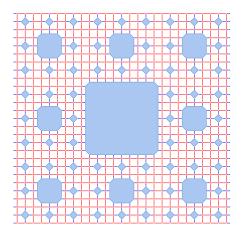


Figure: Poincaré Dual Network \mathcal{G}_3^* : edge resistance is $r(e) = 2^{p-1}$ for blue and r(e) = 1 for red edges; the blue islands are superconducting.

Two dualities = four optimizations \implies happy computing!

@ p ≈ 1.8 and q ≈ 2.4

- ▶ $\min_{\mathcal{U}} (P(\mathcal{U}) = \sum |\nabla \mathcal{U}|^p)$: non- C^2 , no vertex constraints
- $ightharpoonup \min_{\mathcal{J}} \left(P(\mathcal{J}) = \sum |\mathcal{J}|^{q} \right) : C^{2}$, vertex constraints
- $ightharpoonup \min_{\mathcal{J}^*} \left(P^*(\mathcal{J}^*) = \sum |\mathcal{J}^*|^p \right) : \text{non-} C^2, \text{ vertex constraints}$
- ▶ $\min_{\mathcal{U}^*} (P^*(\mathcal{U}^*) = \sum |\nabla \mathcal{U}^*|^q)$: C^2 , no vertex constraints

The last approach: least RAM and smooth enough for L-BFGS quasi-Newton to converge in circa 40 h in sub 11 steps for n=8 with 10^{-8} precision in R_n and graph size of order 9^8 . (L-BFGS = limited memory Broyden-Fletcher-Goldfarb-Shanno.)

Poincaré duality and Uniformization

Conjecture: $f_n := (\mathcal{U}_n, \mathcal{U}_n^*)$ converge to q.s. f_{opt} onto **slit carpet**:

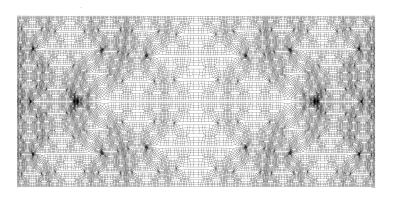


Figure: Approximate Uniformized Carpet (n = 5)

NOTE: Less visually appealing but more effective: define $d_{\rm opt}$ by using the dissipated heat as weight.

Theoretical benefits of Poincaré duality

$$ho R^{1/p} \leq rac{P(\mathcal{J})^{1/q}}{I}$$
 given **any** flow \mathcal{J}

$$ightharpoonup R^{1/p}=R^{*-1/q}\geq \left(rac{P^*(\mathcal{J}^*)^{1/q}}{I}
ight)^{-1}$$
 given any flow \mathcal{J}^*

Theorem

There are $\alpha, \beta > 0$ such that sup-/sub-mult holds:

$$\alpha^{\mathbf{p}} R_n(\mathbf{p}) R_m(\mathbf{p}) \le R_{n+m}(\mathbf{p}) \le \beta^{\mathbf{p}} R_n(\mathbf{p}) R_m(\mathbf{p}).$$

Corollary

Upper/Lower Bounds on p_{res} (e.g. via exact knowledge of α, β).

Proofs: Construct good flows via **self-similarity for all** $n \in \mathbb{N}$

Proof of sup-mult/upper bound (sub-mult/lbd similar)

MAIN TASK:

Construct a flow \mathcal{J}_{n+m}^* (on \mathcal{G}_{n+m}^*) from currents \mathcal{J}_n^* and \mathcal{J}_m^* by gluing **projective flo-tiles**. [Ditto for \mathcal{J}_{n+m} but a bit harder...]

KEY ISSUES: Matching the trans boundary flows ... and power control

Sup-multiplicativity/upper bound Substitution

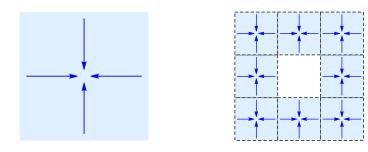
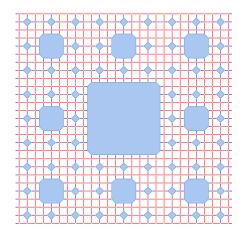


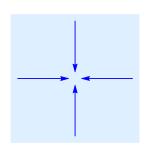
Figure: Tile substitution rule Φ : T_{ini} (left) $\mapsto \Phi(T_{ini})$ (right).

... grows the Network with Superconducting Islands



but still have to design flows ...

Mixed Replacement Flows (for sup-mult/upper Bound)



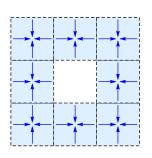


Figure: Flow replacement with prescribed fluxes (x_1, x_2, x_3, x_4)

TO DO: replace currents (in
$$\mathcal{G}_0^*$$
) by flows (in \mathcal{G}_m^*): (here $m=1$)

$$\mathcal{J}_{x_1 x_2 x_3 x_4}^* = t_1 \mathcal{J}_{1010}^* + t_2 \mathcal{J}_{1100}^* + t_3 \mathcal{J}_{0101}^*
+ t_4 \mathcal{J}_{0110}^* + t_5 \mathcal{J}_{0011}^* + t_6 \mathcal{J}_{1001}^*$$

Optimize mixture parameters t_i for each flux data (x_1, x_2, x_3, x_4) .

Pure Replacement Flows (for sup-mult/upper bound)

... where current J_{1010}^* comes from **optimization** for R_1^* ; and \mathcal{J}_{1100}^* , \mathcal{J}_{0101}^* ... "by symmetry":

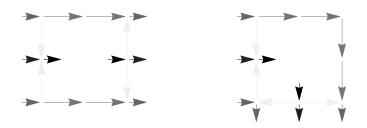


Figure: (Pure) replacement flows \mathcal{J}_{1010}^* and \mathcal{J}_{1100}^* .

UPSHOT: Power ratio \implies upper bound (and sup-mult)

By construction:

[Here m=1]

$$\frac{R_{n+1}^{*}^{1/p^{*}}}{R_{n}^{*}^{1/p^{*}}} \leq \rho^{*} := \max_{(x_{1}, x_{2}, x_{3}, x_{4})} \frac{P^{*} \left(\mathcal{J}_{x_{1} x_{2} x_{3} x_{4}}^{*}\right)^{1/p}}{\left(\sum_{i=1}^{4} |x_{i}|^{p}\right)^{1/p}}$$

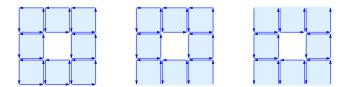
so PUNCHLINE:

$$ho^* < 1 \implies \lim_{n \to \infty} R_n^* = 0 \implies \lim_{n \to \infty} R_n = \infty \implies \mathrm{p}_{res} < \mathrm{p}$$
"Q.E.D."

Proof of sub-mult/lower bound

Similar but harder games with the standard network ...

... work around ISSUE := resistors on edges of naïve flo-tiles



hinders easy flow matching/gluing ...

The substitution rule:

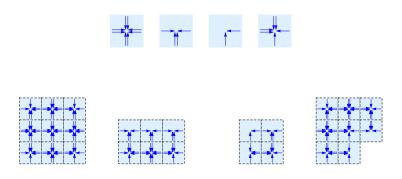


Figure: Sub rule A, B, C, D (above) $\mapsto \Phi(A), \Phi(B), \Phi(C), \Phi(D)$ (below)

Substitution Flo-tiling: super-flo-tiles

optional]

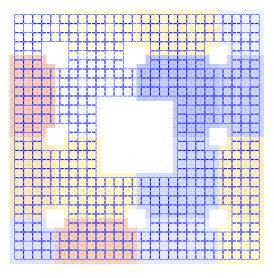


Figure: The network \mathcal{G}_3 with the 2-supertiles shaded.

Figure: Any 2-supertile is stitched from several copies of \mathcal{G}_1^{big} and half- \mathcal{G}_1^{big} : C 2-supertile (left) uses $1 \times \mathcal{G}_1^{big}$ and $2 \times$ half- \mathcal{G}_1^{big} B 2-supertile (right) uses $2 \times \mathcal{G}_1^{big}$ and $4 \times$ half- \mathcal{G}_1^{big}

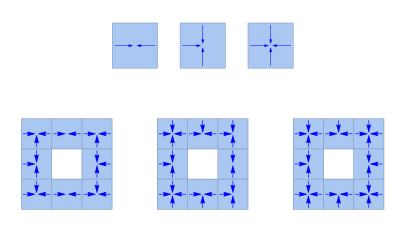
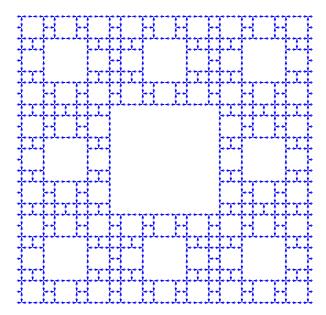


Figure: Sub rule A, B, C, D (above) $\mapsto \Phi(A), \Phi(B), \Phi(C), \Phi(D)$ (below).

2nd Network for sub-mult/Ibd

[optional²]



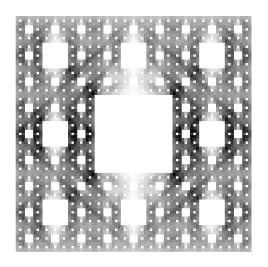
PLAY, CHILD PLAY ...

BUT ... THE REAL FUTURE IS

RENORMALIZATION OPERATOR!

DEF: some other time

Come work with me!



Thank you!